Multi-feature local sparse representation for infrared pedestrian tracking

최초 등록일
최종 저작일
17페이지/파일확장자 어도비 PDF
가격 5,200원 할인쿠폰받기
자격시험 이용후기 이벤트

* 본 문서는 배포용으로 복사 및 편집이 불가합니다.


발행기관 : 한국인터넷정보학회 수록지정보 : KSII Transactions on Internet and Information Systems (TIIS) / 13권 / 3호
저자명 : ( Xin Wang ) , ( Lingling Xu ) , ( Chen Ning )

영어 초록

Robust tracking of infrared (IR) pedestrian targets with various backgrounds, e.g. appearance changes, illumination variations, and background disturbances, is a great challenge in the infrared image processing field. In the paper, we address a new tracking method for IR pedestrian targets via multi-feature local sparse representation (SR), which consists of three important modules. In the first module, a multi-feature local SR model is constructed. Considering the characterization of infrared pedestrian targets, the gray and edge features are first extracted from all target templates, and then fused into the model learning process. In the second module, an effective tracker is proposed via the learned model. To improve the computational efficiency, a sliding window mechanism with multiple scales is first used to scan the current frame to sample the target candidates. Then, the candidates are recognized via sparse reconstruction residual analysis. In the third module, an adaptive dictionary update approach is designed to further improve the tracking performance. The results demonstrate that our method outperforms several classical methods for infrared pedestrian tracking.

참고 자료



제휴사는 별도로 자료문의를 받지 않고 있습니다.

판매자 정보

한국학술정보(주)는 콘텐츠 제작에 도움이 되는 솔루션을 기반으로 풍부한 문화 콘텐츠를 생성하여 새로운 삶의 가치를 창조합니다.

본 학술논문은 한국학술정보(주)와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.

우수 콘텐츠 서비스 품질인증 획득
최근 본 자료더보기
Multi-feature local sparse representation for infrared pedestrian tracking