COPD 코호트 자료에서의 Machine Learning 방법론 비교

최초 등록일
2019.01.05
최종 저작일
2019.01
14페이지/파일확장자 어도비 PDF
가격 4,900원 할인쿠폰받기
판매자한국학술정보(주)
다운로드
장바구니

* 본 문서는 배포용으로 복사 및 편집이 불가합니다.

서지정보

발행기관 : 사)한국빅데이터학회 수록지정보 : 한국빅데이터학회지 / 2권 / 2호
저자명 : 정현명 ( Hyeon-myeong Jeong ) , 박헌진 ( Heon-jin Park ) , 이진국 ( Chin-kook Rhee ) , 이종민 ( Jong-min Lee )

한국어 초록

최근 머신러닝 방법은 높은 예측력과 함께 널리 이용되지만 머신러닝을 제대로 활용하기 위해서 데이터가 가진 한계를 통계적 기법으로 해결한다면 기존보다 더 높은 예측력을 이끌어 낼 수 있다. 본 연구에서는 Longitudinal and Imbalanced Data에서 SMOTE 방법을 활용하여 불균형 문제를 해결한 결과 예측력이 증가하는 것을 확인할 수 있었다. 추가적으로 만성폐쇄성폐질환 급성악화 관련 연구가 활발히 이루어지고 있지만 급성악화와 관련 있는 요인을 찾는 연구만 이루어지고 있어 여러 요인들에 대한 복합적인 관철과 예측모형을 통한 급성악화 예측 연구는 이루어지지 않는다. 본 연구에서는 여러 요인을 같이 살펴봤을 때 어떤 요인들이 만성폐쇄성폐질환 급성악화와 관련이 있는지 확인하고 개인 맞춤형 특정 질환 예측 모형을 구축하였다.

영어 초록

Recently, Machine Learning Methods are widely used with high prediction performance. But if the limit of the data is solved by the statistical technique, It can, lead to higher prediction performance than the existing one. In this study, the SMOTE method is used to solve the imbalance problem in the longitudinal and imbalanced data. As a result, It, was confirmed that the prediction performance increases. Additionally, Although, studies on COPD have been actively conducted, only studies that are related to acute exacerbation have been conducted. So there are no studies on the prediction of acute exacerbation through multiple perspectives and predictive models for various factors. In this study, We examined the factors related to acute exacerbation of COPD and constructed a personalized specific disease prediction model.

참고 자료

없음

자료문의

제휴사는 별도로 자료문의를 받지 않고 있습니다.

판매자 정보

한국학술정보(주)는 콘텐츠 제작에 도움이 되는 솔루션을 기반으로 풍부한 문화 콘텐츠를 생성하여 새로운 삶의 가치를 창조합니다.

본 학술논문은 한국학술정보(주)와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.

상세하단 배너
우수 콘텐츠 서비스 품질인증 획득
최근 본 자료더보기
COPD 코호트 자료에서의 Machine Learning 방법론 비교