Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles

최초 등록일
최종 저작일
24페이지/파일확장자 어도비 PDF
가격 5,900원 할인쿠폰받기
자격시험 이용후기 이벤트

* 본 문서는 배포용으로 복사 및 편집이 불가합니다.


발행기관 : 한국인터넷정보학회 수록지정보 : KSII Transactions on Internet and Information Systems (TIIS) / 12권 / 10호
저자명 : ( Haifeng Sima ) , ( Aizhong Mi ) , ( Xue Han ) , ( Shouheng Du ) , ( Zhiheng Wang ) , ( Jianfang Wang )

영어 초록

In this paper, a novel spectral-spatial joint sparse representation algorithm for hyperspectral image classification is proposed based on multi-layer superpixels in various scales. Superpixels of various scales can provide complete yet redundant correlated information of the class attribute for test pixels. Therefore, we design a joint sparse model for a test pixel by sampling similar pixels from its corresponding superpixels combinations. Firstly, multi-layer superpixels are extracted on the false color image of the HSI data by principal components analysis model. Secondly, a group of discriminative sampling pixels are exploited as reconstruction matrix of test pixel which can be jointly represented by the structured dictionary and recovered sparse coefficients. Thirdly, the orthogonal matching pursuit strategy is employed for estimating sparse vector for the test pixel. In each iteration, the approximation can be computed from the dictionary and corresponding sparse vector. Finally, the class label of test pixel can be directly determined with minimum reconstruction error between the reconstruction matrix and its approximation. The advantages of this algorithm lie in the development of complete neighborhood and homogeneous pixels to share a common sparsity pattern, and it is able to achieve more flexible joint sparse coding of spectral-spatial information. Experimental results on three real hyperspectral datasets show that the proposed joint sparse model can achieve better performance than a series of excellent sparse classification methods and superpixels-based classification methods.

참고 자료



제휴사는 별도로 자료문의를 받지 않고 있습니다.

판매자 정보

한국학술정보(주)는 콘텐츠 제작에 도움이 되는 솔루션을 기반으로 풍부한 문화 콘텐츠를 생성하여 새로운 삶의 가치를 창조합니다.

본 학술논문은 한국학술정보(주)와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.

상세하단 배너
우수 콘텐츠 서비스 품질인증 획득
최근 본 자료더보기
Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles