Majorization-Minimization-Based Sparse Signal Recovery Method Using Prior Support and Amplitude Information for the Estimation of Time-varying Sparse Channels

최초 등록일
2018.12.06
최종 저작일
2018.12
21페이지/파일확장자 어도비 PDF
가격 5,600원 할인쿠폰받기
판매자한국학술정보(주)
다운로드
장바구니
자격시험 이용후기 이벤트

* 본 문서는 배포용으로 복사 및 편집이 불가합니다.

서지정보

발행기관 : 한국인터넷정보학회 수록지정보 : KSII Transactions on Internet and Information Systems (TIIS) / 12권 / 10호
저자명 : ( Chen Wang ) , ( Yong Fang )

영어 초록

In this paper, we study the sparse signal recovery that uses information of both support and amplitude of the sparse signal. A convergent iterative algorithm for sparse signal recovery is developed using Majorization-Minimization-based Non-convex Optimization (MM-NcO). Furthermore, it is shown that, typically, the sparse signals that are recovered using the proposed iterative algorithm are not globally optimal and the performance of the iterative algorithm depends on the initial point. Therefore, a modified MM-NcO-based iterative algorithm is developed that uses prior information of both support and amplitude of the sparse signal to enhance recovery performance. Finally, the modified MM-NcO-based iterative algorithm is used to estimate the time-varying sparse wireless channels with temporal correlation. The numerical results show that the new algorithm performs better than related algorithms.

참고 자료

없음

자료문의

제휴사는 별도로 자료문의를 받지 않고 있습니다.

판매자 정보

한국학술정보(주)는 콘텐츠 제작에 도움이 되는 솔루션을 기반으로 풍부한 문화 콘텐츠를 생성하여 새로운 삶의 가치를 창조합니다.

본 학술논문은 한국학술정보(주)와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.

상세하단 배너
우수 콘텐츠 서비스 품질인증 획득
최근 본 자료더보기
Majorization-Minimization-Based Sparse Signal Recovery Method Using Prior Support and Amplitude Information for the Estimation of Time-varying Sparse Channels