WiFi 핑거프린트를 이용한 지하철 위치 추적 정확성 향상을 위한 연구

저작시기 2016.01 |등록일 2017.08.06 | 최종수정일 2018.11.14 파일확장자어도비 PDF (pdf) | 8페이지 | 가격 6,000원
다운로드
장바구니관심자료
상세신규 배너

* 본 문서는 배포용으로 복사 및 편집이 불가합니다.

서지정보

발행기관 : 한국산학기술학회 수록지정보 : 한국산학기술학회 논문지 / 17권 / 1호
저자명 : 안태기, 안치형, 남명우, 박진홍, 이영석

없음

한국어 초록

본 논문에서는 GPS를 이용할 수 없는 지하철 승강장에서 움직이는 지하철의 위치 추적 정확성을 높이기 위해 WiFi 핑거프린트 기법에 k-nn기반 알고리즘들을 적용한 후 오류를 검출하고 비교하였다. 승강장내 지하철의 위치 정보는 지하철 제어를 위해 종합사령실에서 필요로 하며, 이용객의 안전과 편의를 위해 다양하게 사용되어지고 있다. 현재 역사 또는 승강장 내에는 승객의 편의를 위해 각 통신사별로 WiFi용 AP(Access Point)들이 다수 설치되어 있어 이를 활용한 다양한 위치 추정 연구들도 활발히 진행되고 있다. 본 연구에서는 설치되어진 WiFi용 AP를 활용할 경우와 신규로 WiFi용 AP를 설치할 경우 등을 고려하여 다양한 조건에서 지하철의 위치를 추적할 수 있는 시뮬레이터를 개발한 후 모의실험을 진행하였다. 개발된 시뮬레이터는 설치된 WiFi용 AP들의 개수와 승강장 넓이, 지하철 진입속도 등에 따라 지하철의 위치를 추적할 수 있도록 설계되었다. 그리고 k-nn알고리즘과 fuzzy k-nn알고리즘을 선택적으로 적용할 수 있으며 핑거프린트 데이터베이스를 기반으 로 4가지의 거리 측정 알고리즘을 적용하여 위치 추적 오류를 비교할 수 있도록 하였다. 시뮬레이터를 이용한 모의 실험결과 0.5m의 그리드 단위길이에 8개의 WiFi용 AP를 설치하고 ‘minkowski’ 거리 측정 알고리즘을 적용한 k-nn알고리즘를 사용할 경우 가장 정확한 위치 추적결과를 얻을 수 있었다.

영어 초록

In this study, an WiFi fingerprinting method based on the k-nn algorithm was applied to improve the accuracy of location tracking of a moving train on a platform and evaluate the performance to minimize the estimation error of location tracking. The data related to the position of the moving train are monitored by the control center for trains and used widely for the safety and comfort of passengers. The train location tracking methods based on WiFi installed by telecom companies were evaluated. In this study, a simulator was developed to consider the environments of two cases; in already installed WiFi devices and new installed WiFi devices. The developed simulator can simulate the localized estimation of the position under a variety of conditions, such as the number of WiFi devices, the area of platform and entry velocity of train. To apply location tracking algorithms, a k-nn algorithm and fuzzy k-nn algorithm were applied selectively according to the underlying condition and also four distance measurement algorithms were applied to compare the error of location tracking. In conclusion, the best method to estimate train location tracking is a combination of the k-nn algorithm and Minkoski distance measurement at a 0.5m grid unit and 8 WiFi AP installed.

참고 자료

없음

구매평가

판매자에게 문의하기 최근 구매한 회원 학교정보 보기

ㆍ다운로드가 되지 않는 등 서비스 불편사항은 고객센터 1:1 문의하기를 이용해주세요.
ㆍ이 자료에 대해 궁금한 점을 판매자에게 직접 문의 하실 수 있습니다.
ㆍ상업성 광고글, 욕설, 비방글, 내용 없는 글 등은 운영 방침에 따라 예고 없이 삭제될 수 있습니다.

문의하기

판매자 정보

본 학술논문은 (주)누리미디어와 각 학회간에 저작권계약이 체결된 것으로 AgentSoft가 제공 하고 있습니다.
본 저작물을 불법적으로 이용시는 법적인 제재가 가해질 수 있습니다.

상세하단 배너
우수 콘텐츠 서비스 품질인증 획득
최근 본 자료더보기
상세우측 배너
WiFi 핑거프린트를 이용한 지하철 위치 추적 정확성 향상을 위한 연구
페이지
만족도 조사

페이지 사용에 불편하신 점이 있으십니까?

의견 보내기