활동기반 교통모형 분석자료 구축을 위한 소셜네트워크 공간빅데이터 활용방안 연구

저작시기 2016.08 |등록일 2016.09.26 파일확장자어도비 PDF (pdf) | 10페이지 | 가격 4,000원
다운로드
장바구니관심자료
상세신규 배너

* 본 문서는 배포용으로 복사 및 편집이 불가합니다.

서지정보

발행기관 : 한국ITS학회 수록지정보 : 한국ITS학회논문지 / 15권 / 4호 / 44 ~ 53 페이지
저자명 : 김승현,김주영,이승재

없음

한국어 초록

오늘날 우리 주변에는 규모를 가늠할 수 없을 정도로 많은 정보와 데이터가 생산되는 ‘빅데이터(Big Data)’의 시대가 도래 하였으며, 그 중요성이 날로 커지고 있다. 교통분야에서는 전통적인 통행기반교통모형(Trip-Based Model)인 4단계 교통수요추정법의 한계가 드러나고 있으며, 활동기반교통모형(Activity-Based Model)을 이용한 수요 추정 방법이 교통계획에 새로운 패러다임으로 떠오르고 있다. 교통은 사람이나 물류의 공간상의 시간적 이동을 의미한다고 봤을 때 공간데이터와 밀접한 관련이 있다. 따라서 공간정보를 포함하고 있는 SNS를 대상으로 시계열적 공간정보를 추출하고, 이를 현재의 통행기반 교통모형(Trip-Based Model) O/D와 비교․분석하여 그 특성을 파악하고 유용성을 검증하였다. 또한, 활동기반교통모형(Activity-Based Model)의 분석자료를 구축하여 교통시뮬레이터 프로그램을 이용해 시뮬레이션을 수행하고 그 결과를 고찰하였다. 연구결과 다수의 활동기반 교통모형 분석자료를 구축할 수 있었으며, 이번 연구를 통해 교통분야 빅데이터 활용의 기술적 한계를 극복할 수 있는 가능성을 확인하였고, 향후 발전방향을 모색하는 기회가 되었다.

영어 초록

The era of Big Data has come and the importance of Big Data has been rapidly growing. The part of transportation, the Four-Step Travel Demand Model(FSTDM), a traditional Trip-Based Model(TBM) reaches its limit. In recent years, a traffic demand forecasting method using the Activity-Based Model(ABM) emerged as a new paradigm. Given that transportation means the spatial movement of people and goods in a certain period of time, transportation could be very closely associated with spatial data. So, I mined Spatial Big Data from SNS. After that, I analyzed the character of these data from SNS and test the reliability of the data through compared with the attributes of TBM. Finally, I built a database from SNS for the operation of ABM and manipulate an ABM simulator, then I consider the result. Through this research, I was successfully able to create a spatial database from SNS and I found possibilities to overcome technical limitations on using Spatial Big Data in the transportation planning process. Moreover, it was an opportunity to seek ways of further research development.

참고 자료

없음
  • 구매평가(0)
  • 구매문의(0)
      최근 구매한 회원 학교정보 보기
      1. 최근 2주간 다운받은 회원수와 학교정보이며
         구매한 본인의 구매정보도 함께 표시됩니다.
      2. 매시 정각마다 업데이트 됩니다. (02:00 ~ 21:00)
      3. 구매자의 학교정보가 없는 경우 기타로 표시됩니다.
      4. 지식포인트 보유 시 지식포인트가 차감되며
         미보유 시 아이디당 1일 3회만 제공됩니다.
      상세하단 배너
      우수 콘텐츠 서비스 품질인증 획득
      최근 본 자료더보기
      상세우측 배너
      상세우측 배너
      활동기반 교통모형 분석자료 구축을 위한 소셜네트워크 공간빅데이터 활용방안 연구
      페이지
      만족도 조사

      페이지 사용에 불편하신 점이 있으십니까?

      의견 보내기