총 35개
-
MMA의 현탁 중합 A+ 보고서2025.01.171. 현탁 중합 현탁 중합(Suspension polymerization)은 단량체를 라디칼 중합시켜 고분자 화합물을 얻는 중합 방법으로, 용매 대신 물과 같은 비활성의 매질을 사용하여 중합한다. 단량체를 비활성의 매질 속에서 0.01~1mm 정도의 입자로 분산시켜 중합하면 중합반응 결과 얻어지는 고분자 화합물은 비드(bead)와 같은 입자로 된다. 현탁 중합의 장점은 중합 열의 제거와 조절이 용이하고 취급이 쉬우며 구형의 고분자를 형성할 수 있다. 단점은 반응기 단위 용적당 수율이 낮고 입자 표면에 흡착된 첨가제의 제거가 완전하지...2025.01.17
-
고분자 중합 실험 예비보고서2025.01.051. PVAc 구조, 물리적 특성 및 화학적 특성 비닐아세테이트는 무색의 액체로, 분자량 86.09g/mol, 녹는점 ?100.2℃, 끓는점 72.7℃이다. 과산화물과 빛 등에 의해 중합하여 폴리아세트산비닐이 된다. PVAc(Polyvinyl acetate)은 화학식 (C4H6O2)n을 갖는 접착제이다. 일반적으로 폴리 초산 비닐로도 불리는 PVAc는 무색투명한 열가소성 수지이다. 내광성이 좋으며 열에 의해 착색되지 않고 노화되지 않는다. 2. 단계 성장(step_growth_polymerization) vs 연쇄 성장(chain_...2025.01.05
-
미세플라스틱 검출을 위한 라만 분광법 활용2025.01.231. 라만 분광법 라만 분광법은 물질에 의한 전자기 복사선의 라만 산란을 이용하여 물질의 회전이나 진동상태에 대한 정보를 얻는 분광법입니다. 라만 산란은 매우 약한 현상으로 입사된 광자 107개 중 1개가 라만 산란합니다. 라만 분광법은 물을 포함하는 시료에도 유용하며, 적외선 분광법에 비해 시료 준비나 처리가 거의 불필요합니다. 라만 분광기는 광원, slit, grating, detector로 구성되며, Czerny-Turner 구성과 Fastie-Ebert 구성이 일반적으로 사용됩니다. 2. 미세플라스틱 미세플라스틱은 5nm 이...2025.01.23
-
메틸메타크릴레이트(MMA)의 벌크중합2025.05.061. 벌크중합법 벌크중합은 용매나 분산매체를 사용하지 않고 단량체만으로 또는 소량의 개시제를 가하여 중합체를 얻는 라디칼 중합법을 말한다. 벌크중합은 간편하면서도 고순도 및 높은 분자량의 중합체를 얻을 수 있는 장점이 있지만 반응시 열제거가 어렵고 경우에 따라서는 생성된 중합체가 단량체에 용해되지 않으며, 또한 반응계의 점도가 높아 중합에 기술적인 문제점이 뒤따르게 된다. 2. 라디칼 중합 메커니즘 라디칼 중합은 개시단계, 성장단계, 정지단계로 이루어지며, 개시제로 사용된 AIBN은 열이나 빛에 의해 쉽게 분해되어 라디칼을 생성할 ...2025.05.06
-
[A+ 레포트] PMMA 벌크중합 (예비 레포트)2025.01.161. 라디칼 중합 라디칼 중합 메커니즘을 이해하고 있다. 개시제가 열 또는 빛에 의해 라디칼을 생성하는 개시반응으로 시작되며, 라디칼과 단량체의 이중결합이 반응하는 성장반응으로 고분자가 생성된다. 정지반응에서 라디칼이 서로 반응하여 반응이 종결되며, 사슬이동반응을 통해 고분자의 분자량을 조절할 수 있다. 2. 괴상중합 용매와 같은 분산매체를 사용하지 않고 단량체 및 소량의 개시제, 첨가제 등으로만 중합하는 방법이다. 간단하여 고순도, 높은 분자량의 고분자를 얻을 수 있지만, 중합 시 반응열 제거가 어려워 자기촉진화효과를 일으켜 분자...2025.01.16
-
PS 용액중합 실험보고서2025.04.301. 용액중합 용액중합은 단량체 및 촉매를 비 반응성 용매에 용해시켜 중합체 및 공중합체를 생성하는 반응이다. 용액중합이 진행되는 동안, 용매 액체는 화학반응에 의해 발생한 열을 흡수하여 반응속도를 제어한다. 용액중합의 장점은 용매가 들어가기 때문에 벌크중합과는 반대로 열 분산이 잘 되며, 낮은 점도로 반응이 가능하다는 점이다. 단점은 완성된 중합체로부터 과량의 용매를 제거하는 데 어려움이 있다는 점이다. 2. 점도 점도란, 한 종의 액체가 다른 층의 액체를 지나 이동할 때 겪는 저항을 의미한다. 비점도, 환산점도, 상대점도, 대수...2025.04.30
-
고분자 용해도 예비 레포트2025.01.181. 고분자 고분자는 분자량이 1만 이상인 큰 분자로, 100개 이상의 원자로 구성되어 있으며 대개 중합체이다. 고분자는 다른 물질과 달리 일정한 녹는점이나 끓는점이 없고, 유리전이온도라는 특이한 상변이 온도를 가진다. 또한 물, 혹은 물과 비슷한 용매에서 불용성을 보이는 특성이 있다. 2. PMMA PMMA(폴리메틸메타크릴레이트)는 충격 강도, 내화학성 및 내열성보다 인장 강도, 굴곡 강도, 투명성, 광택성 및 자외선 허용 오차가 중요한 경우 폴리카보네이트의 경제적인 대안이 될 수 있다. PMMA는 비스페놀-A를 포함하지 않는 장...2025.01.18
-
중공실 PMMA 벌크중합2025.01.131. 라디칼 중합 메커니즘 라디칼 중합 반응은 개시반응, 전개반응, 종결반응으로 총 3단계로 진행됩니다. 개시 반응에서는 개시제 AIBN에 열을 가하면 라디칼이 생기면서 nitrogen 가스를 생성하고, 생성된 라디칼과 첫 번째 단량체 MMA가 반응하여 MMA의 탄소에 라디칼이 생깁니다. 전개 반응에서는 개시 반응한 뒤로 연쇄적으로 MMA를 붙여 넣어서 고분자 사슬을 만듭니다. 종결 반응은 라디칼이 소멸되는 단계로, Methyl methacrylate는 보통 recombination이 아닌 disproportionation반응을 통...2025.01.13
-
생체 세라믹 재료를 이용한 인공뼈 설계2025.01.041. 생체 뼈의 구조 및 특성 뼈는 세포와 이들 세포 간에 존재하는 다량의 골 기질로 이루어져 있으며, 골 기질 대부분은 교원섬유로 구성된 유기질 성분과 칼슘으로 구성된 무기질 성분으로 이루어진다. 생체 세라믹스는 생체재료로 사용되는 인공적인 물질로, 생체활성과 생체불활성으로 나뉜다. 생체활성 세라믹은 뼈와 직접 화학결합을 형성하지만 기계적 강도가 낮고, 생체불활성 세라믹은 섬유질 피막을 형성하지만 기계적 성질이 우수하다. 2. 인공뼈 재료의 종류 및 특성 현재 대표적으로 사용되는 인공뼈 재료에는 세라믹, 금속, 고분자가 있다. 세...2025.01.04
-
[A+ 레포트] PVAc 중합 레포트(벌크중합의 원리, 단량체 및 개시제의 정제, PVAc 특성)_총 9페이지2025.01.191. 벌크중합 벌크중합이란 가장 간단한 중합방법으로, 장치가 비교적 간단하고 반응이 빠르며, 수득률이 높고 고순도의 중합체를 얻을 수 있으며, 중합체를 그대로 취급할 수 있는 것이 장점이다. 그러나 중합계의 발열이 강하여 온도조절이 어렵고, 중합체의 분자량분포가 넓어지며, 중합체의 석출이 쉽지 않은 단점도 있다. 2. 단량체(MMA) 정제 중합금지제인 hydroquinone은 약산성이므로 NaOH를 넣어 중화시켜 제거한다. MMA는 소수성이고 NaOH 수용액은 친수성이므로 이에 따라 상 분리가 일어나는데, MMA의 밀도가 중화된 용...2025.01.19
