
총 89개
-
머신러닝의 3가지 학습 방법: 지도학습, 비지도 학습, 강화학습2025.01.041. 지도학습 지도학습은 입력과 출력 간의 관계를 학습하는 방식으로, 정답과 사례를 연결시켜주는 방식으로 이루어집니다. 데이터 집합을 통해 입력과 출력 간의 함수관계를 기계가 배우게 되며, 이렇게 얻어진 함수를 모델이라고 합니다. 지도학습으로 만들 수 있는 대표적인 것은 패턴 분류와 회귀분석입니다. 2. 비지도 학습 비지도학습은 입력 데이터 세트에 레이블을 달아주지 않고, 기계가 데이터를 묶을 수 있는 특징을 스스로 찾아내게 합니다. 비지도 학습은 데이터 집합 속에서 숨겨진 패턴을 배우며, 군집화를 이용해 서로 유사한 데이터를 묶습...2025.01.04
-
인공지능의 개념 및 원리와 일상생활 및 교육분야에서의 활용사례2025.01.251. 인공지능의 개념과 원리 인공지능은 기계가 인간의 지능적인 행동을 모방하는 것을 목표로 하는 기술로, 기계학습, 패턴인식, 자연어 처리, 인공신경망 등의 다양한 원리와 기술이 활용된다. 이를 통해 컴퓨터 시스템이 사람의 학습, 추론, 문제 해결 등과 같은 지능적인 능력을 갖출 수 있다. 2. 일상생활에서의 인공지능 활용사례 일상생활에서 인공지능 기술은 음성 비서, 추천 시스템, 스마트 홈 기기 등을 통해 활용되고 있다. 이를 통해 사용자의 편의성과 효율성이 증진되고 있지만, 개인정보 보호와 보안 등의 이슈에 대한 고려가 필요하다...2025.01.25
-
인공지능(Artificial Intelligence)에 관하여 조사하여 설명하고 인공지능을 위해 활용될 수 있는 정보통신 기술에 관하여 서술하시오2025.01.251. 인공지능의 정의와 역사 인공지능(Artificial Intelligence, AI)은 인간의 지능을 모방하여 학습하고 문제를 해결하며 결정을 내리는 컴퓨터 시스템을 의미합니다. 인공지능의 역사는 1950년대 앨런 튜링(Alan Turing)의 논문 'Computing Machinery and Intelligence'에서 시작되었으며, 1956년 다트머스 회의(Dartmouth Conference)에서 인공지능이라는 용어가 처음 사용되었습니다. 2. 인공지능의 주요 기술과 접근 방법 인공지능에는 기계 학습, 심층 학습, 자연어 ...2025.01.25
-
빅데이터의 이해와 활용2025.01.251. 데이터과학자 데이터 과학자는 기계학습, 데이터 시각화, 통계 분석 등의 지식을 바탕으로 방대한 양의 데이터에서 일정한 패턴을 발견하고, 그를 통해서 인사이트를 얻어 내는 역할을 수행한다. 또한 데이터 과학자들은 복잡한 빅데이터 분석을 통해 추출한 인사이트로 다양한 비즈니스 의사 결정을 내린다. 작업 중인 데이터를 이해하며, 데이터를 정제하고, 처음부터 제대로 된 데이터가 입력될 수 있도록 데이터를 전처리하며 예측을 위한 모델을 구축하게 된다. 데이터 과학자들은 인공지능 지식과 활용 능력을 갖추어야 하며, 기계학습 알고리즘에 대...2025.01.25
-
경영정보시스템_인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오.2025.01.291. 인공지능의 개념 인공지능은 인간의 지능을 모방하거나 이를 초월하는 컴퓨터 시스템을 개발하는 학문이다. 인공지능의 개념은 크게 약한 인공지능과 강한 인공지능으로 구분된다. 약한 인공지능은 특정한 작업을 수행하도록 설계된 시스템이며, 강한 인공지능은 인간과 유사한 수준의 지능을 가지고 자율적으로 문제를 해결하고 학습할 수 있는 능력을 지닌 시스템을 의미한다. 2. 인공지능 기술: 기계학습과 딥러닝 인공지능의 핵심 기술로는 기계학습과 딥러닝 알고리즘이 있다. 기계학습은 데이터를 기반으로 모델을 학습시키고, 이를 통해 새로운 데이터에...2025.01.29
-
인공지능2025.01.131. 인공지능 AI 정의 인공지능 AI라고도 불리는 '인공지능'이란 인간과 같은 지성을 갖춘 존재 또는 시스템에 의해 만들어진 인공적인 지능을 의미하며 컴퓨터가 인간의 지능적인 행동을 모방할 수 있도록 하는 것을 인공지능이라고 한다. 2. 인공지능의 종류 강한 인공지능(Strong AI)은 자의식이 있어 스스로를 인공지능이라고 인식이 가능하며 자신이 얻는 정보 등을 바탕으로 스스로 판단을 내리고 명령을 실행하는 인공지능을 말한다. 약한 인공지능(Week AI)은 자의식이 없어 스스로 판단을 내릴 수 없는 인공지능 시스템을 이야기한다...2025.01.13
-
인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.05.131. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 기본적으로 인간의 지능 수준을 넘지 못하고 제한된 작업에만 사용되는 인공지능을 의미한다. 반대로 강한 인공지능은 인간의 지능을 초월하여 다양한 작업을 수행하고 사람과 유사한 추론, 학습, 문제 해결 능력을 갖춘 인공지능을 말한다. 약한 인공지능은 사전에 정의된 규칙이나 알고리즘을 사용하여 작업을 수행하지만, 강한 인공지능은 데이터 기반 학습을 통해 지식을 습득하고 문제를 해결한다. 약한 인공지능은 '자아'가 없다는 차이점이 있다. 2. 기계학습의 개념과 특징 기계 학습은 인...2025.05.13
-
생성시스템에 대해 설명하시오2025.05.111. 생성시스템 생성시스템은 컴퓨터 프로그램이나 하드웨어를 사용하여 새로운 콘텐츠를 자동으로 생성하는 시스템을 말합니다. 이러한 시스템은 인공지능, 기계학습, 자연어처리 등의 기술을 활용하여 다양한 종류의 콘텐츠를 생성할 수 있습니다. 생성시스템은 예술, 문학, 음악, 게임, 디자인 등 다양한 분야에서 활용될 수 있으며, 콘텐츠의 품질과 다양성을 향상시킬 수 있습니다. 2. 생성시스템의 작동 방식 생성시스템은 다양한 방식으로 작동할 수 있습니다. 예를 들어, 자연어처리 기술을 사용하여 텍스트를 생성하는 시스템은 주어진 데이터를 분석...2025.05.11
-
갈수록 정보이론이 중요해지는 이유2025.05.101. 정보이론 정보이론은 정보의 전송, 저장, 처리에 관한 원리와 방법을 연구하는 학문으로, 우리가 일상에서 마주하는 다양한 형태의 정보를 효율적으로 다루는 데에 도움을 줍니다. 정보이론은 어떻게 하면 정보를 가장 효율적으로 전달하고 저장할 수 있는지, 그리고 정보의 손실 없이 전달할 수 있는 방법을 연구합니다. 2. 빅데이터 빅데이터 시대에는 정보의 양이 기하급수적으로 증가하고 있습니다. 이 때문에 정보를 효과적으로 다루기 위해서는 정보이론의 원리와 방법을 활용해야 합니다. 정보이론은 데이터 압축, 데이터 전송의 효율성, 정보의 ...2025.05.10
-
데이터 확장하기 (Data Augmentation)2025.05.101. 데이터 확장 데이터 확장은 기존의 데이터를 사용하여 새로운 데이터를 생성하거나 추가 정보를 생성하는 프로세스를 말합니다. 이는 기계 학습 및 인공지능 분야에서 중요한 작업 중 하나입니다. 데이터 확장은 데이터셋의 크기와 다양성을 늘리는 데 도움이 됩니다. 큰 데이터셋은 모델의 성능과 일반화 능력을 향상시킬 수 있습니다. 더 다양한 데이터를 사용하면 모델이 다양한 패턴과 예외 상황을 인식하고 처리하는 데 더 효과적일 수 있습니다. 2. 데이터 확장 기법 데이터 확장은 주로 이미지 및 오디오 데이터 처리에서 많이 사용됩니다. 다양...2025.05.10