총 6개
-
생성형 인공 지능 입문 족보 대비 문제은행(오프라인 기말고사, 세종대)2025.01.151. 생성형 인공지능이란? 생성형 인공지능은 데이터 전처리, 모델 학습, 결과 생성으로 구성되며, GPT와 ChatGPT와 같은 모델이 대표적입니다. 생성형 인공지능은 텍스트, 이미지, 소리, 동영상 등 다양한 콘텐츠 생성에 활용되지만, 데이터 의존성, 모델 복잡성, 윤리적 문제 등의 한계가 있습니다. 이를 해결하기 위해 데이터 증강, 전이 학습, 하드웨어 개선, 효율적인 알고리즘 개발 등의 방안이 필요합니다. 2. 언어 처리 신경망 개요 RNN은 순차 데이터 처리를 위해 필요하지만, 기울기 소실 문제가 있습니다. LSTM과 GRU...2025.01.15
-
인공지능의 개념과 기술 그리고 국내외의 활용사례2025.01.181. 인공지능의 분류 인공지능은 크게 약한 인공지능과 강한 인공지능으로 분류할 수 있다. 약한 인공지능은 기계학습 기술을 가진 전문가들이 설계한 시스템으로, 특정 분야에서 지능적인 행동을 한다. 강한 인공지능은 사람처럼 자유롭게 생각하고 감정을 표현할 수 있는 범용 인공지능을 의미한다. 2. 기계학습 개념 및 특징 기계학습은 데이터를 분석하고 학습한 내용을 의사결정에 적용하는 알고리즘이다. 기계학습은 다수의 사례를 통해 패턴을 학습하고 이를 바탕으로 판단한다는 점에서 '패턴 인식'이라고도 불린다. 기계학습은 알고리즘을 통해 데이터를...2025.01.18
-
인공지능의 개념과 기술 그리고 국내외의 활용사례2025.01.181. 약한 인공지능 약한 인공지능은 기존의 프로그래밍을 통해 직접 명령을 입력하고 자동화하는 소프트웨어와 같은 전문가 시스템을 의미한다. 지능 요소가 없어 인간의 개입이 필요하지만, 축적된 소프트웨어와 오픈소스, 협력 이력을 바탕으로 점점 정교한 프로그래밍과 설계가 가능해지고 있다. 2. 강한 인공지능 강한 인공지능은 사람처럼 생각하고 감정을 표현할 수 있으며 자의식을 가진 인공지능을 의미한다. 기계학습 시 인간의 보상 체계를 따르는 경향이 강해 상식적인 행동을 보이지 않을 수 있다는 한계가 있지만, 자율주행차와 같이 특정 분야에서...2025.01.18
-
물리 정보화 신경망(Physics-Informed Neural Network, PINN)2025.05.101. 물리 정보화 신경망(Physics-Informed Neural Network, PINN) 물리 정보화 신경망(Physics-Informed Neural Network, PINN)은 물리학적인 지식을 신경망 구조에 통합하여 과학적 모델링 및 예측에 사용되는 기술입니다. 이 방법은 데이터 기반 기계 학습과 물리학적 모델링을 결합하여 주어진 물리적 시스템에 대한 효율적인 모델링을 수행할 수 있습니다. PINN은 물리학적 법칙과 제약 조건을 신경망 아키텍처에 내재화하여 물리학적 문제를 해결하며, 제한된 데이터 세트로부터 모델을 학습하...2025.05.10
-
효율적인 텍스트 분류를 위한 fastText 모델2025.01.261. 텍스트 분류 이 논문은 웹 검색, 정보 검색, 감정 분석과 같은 애플리케이션에서 자연어 처리의 필수 작업인 텍스트 분류 문제를 다룹니다. 저자들은 신경망 기반 모델은 정확하지만 훈련과 테스트 단계 모두에서 계산 비용이 많이 들고 느린 경향이 있기 때문에, 대규모 데이터 세트를 처리할 수 있는 확장 가능하고 효율적인 모델이 필요하다고 지적합니다. 이 논문에 적용된 모델인 fastText는 높은 정확도를 유지하면서 텍스트 분류의 계산 비효율성 문제를 해결하도록 설계되었습니다. 2. 데이터 세트 이 논문에서는 텍스트 분류 작업에 잘...2025.01.26
-
인공지능의 개념과 기술 그리고 활용사례2025.01.181. 인공지능의 개념과 역사 인공지능(Artificial Intelligence, AI)은 기계가 인간과 유사하게 정보를 처리하고, 복잡한 문제를 해결할 수 있는 능력을 부여하는 과학기술 분야입니다. 1950년대에 공식적으로 탄생한 이 분야는 앨런 튜링의 '튜링 테스트'를 시작으로 다양한 학문적, 산업적 발전을 거쳐 현재에 이르고 있습니다. 초기 단계에서는 논리 추론과 규칙 기반 시스템이 주를 이루었으나, 컴퓨터 하드웨어의 발전과 데이터 처리 능력의 증가로 인해 현재에는 기계학습, 딥러닝 등이 주된 연구 분야로 자리 잡고 있습니다....2025.01.18
