[생활과 수학] 제논의 역설

등록일 2003.11.08 한글 (hwp) | 3페이지 | 가격 400원

소개글

^^

목차

없음

본문내용

어떤 양을 무한히 쪼갤 수 있거나 또는 그것이 매우 많은 개수의 쪼갤 수 없는 극소량들의 합으로 이루어져 있다고 가정할 수 있을까? 첫 번째 가정은 그냥 받아들일 수 있을 것처럼 보인다. 그러나 어떤 것을 발견하는데 두 번째 가정을 이용할 때는 자칫 어떤 불합리성을 놓칠 가능성이 있다. 고대 그리스의 수학 학교들이 위의 두 가정을 이용하는 것을 발달시켰다는 증거가 있다. 두 가정 모두가 직면하는 약간의 논리적 문제점이 기원전 5세기경에 엘레아학파의 철학자 제논이 만든 네 개의 역설에 의하여 충격적으로 제기되었다. 수학에 심대한 영향을 끼친 이 역설을 어떤 양을 무한히 쪼갤 수 있다고 가정하든지 또는 많은 개수의 극소량들의 합으로 만들어질 수 있다고 가정하든지 간에 운동은 불가능하다고 주장한다. 우리는 이 역설의 본질을 다음 두 가지로 설명할 수 있다.
이분법(The Diconotomy):만일 직선을 무한히 쪼갤 수 있다면 운동은 불가능하다. 왜냐하면 직선을 통과하려면 우선 중점을 지나야만 하고 그러기 위해서는 사분점을 지나야 하고 또 그러기 위해서 팔분점을 지나야만 하는 등 무한히 많은 점을 지나야 한다. 따라서 운동은 시작조차 할 수 없다.
화살(The Arrow):만약 시간이 더 이상 쪼개질수 없는 아주 짧은 순간들로 이루어져 있 다면 움직이는 화살은 항상 정지해 있다. 왜냐하면 매 순간마다 그 화살은 한 고정된 지점에 있기 때문이다. 각 순간에서 이 명제가 참이므로 화살은 결코 움직이지 않는다.
그 후 제논의 역설에 대한 많은 해설이 주어졌는데 그들 대부분의 각 양이 극히 작다 하더라도 양의 무한개의 합은 무한히 크고 (그림생략), 그 크기가 0인 양의 유한 또는 무한개의 합은 0이라는 (nx0=0, ∞x0=0) 통상적인 직관적 믿음에 도전한 것이었다. 그 역설을 만든 동기가 무엇이었든 간에 그것들의 영향으로 무한소가 그리스 논증기하학에서 배제되었다.
      최근 구매한 회원 학교정보 보기
      1. 최근 2주간 다운받은 회원수와 학교정보이며
         구매한 본인의 구매정보도 함께 표시됩니다.
      2. 매시 정각마다 업데이트 됩니다. (02:00 ~ 21:00)
      3. 구매자의 학교정보가 없는 경우 기타로 표시됩니다.
      최근 본 자료더보기
      추천도서