An interactive approach to build an influence diagram based on Neural Neworks

저작시기 1997.01 |등록일 2000.08.21 어도비 PDF (pdf) | 17페이지 | 가격 800원

목차

ABSTRACT
1. Introduction
2. Influence diagram
3. Decision class analysis and neural network
4. Neural network based process to build an ID
5. Interactive procedure to build an ID
6. An illustrative case example
7. Conclusions
8. References

본문내용

Building an Influence diagram in decision analysis is known to be a most complicated and burdensome process. The use of neural networks to generate influence diagrams in the topological level results in a good performance, the generated ID is usually not a well-formed influence diagram. Furthermore it needs more modification to be applicable to real decision problems, especially when group decision participants are involved.
This research suggests an interactive procedure to build a well-formed influence diagram from the initial influence diagram generated from neural networks which are thought to be an approximation of experts’ (explicit or implicit) interpretation of decision problem. Our procedure is composed of two phases; one is to modify the influence diagram by each decision participant, the other one is to resolve the differences of group’s influence diagram interactively. We applied our procedure to an analogous land development and conservation problems. When the problem is complicated and group decision participants are involved, this research is expected to be more useful to inexpensively model a decision problem.

참고 자료

[BUN 84] BUNN D.W., Applied Decision Analysis, McGraw-Hill, New York, 1984.
[CHU 92] CHUNG T.Y., KIM J.K., KIM S.H., Building an influence diagram in a know-
ledge based decision system, Expert Systems With Applications, vol. 4, 1992, p. 33-44.
[HOL 89] HOLTZMAN S., Intelligent Decision Systems, Addison-Wesley, MA, 1989.
[HOW 84] HOWARD R.A., The used car buyer, in Readings on the Principles and
Applications of Decision Analysis. Vol. II, ed. R.A. Howard and J.E. Matheson, Strategic
Decision Group, Menlo Park, CA, 1984.
[HOW 88] HOWARD R.A., Decision analysis: practice and promise, Management Science,
vol. 34, 1988, p. 679-695.
[KIM 91] KIM J.K., A Knowledge-Based System for Decision Analysis, Ph.D. thesis,
Department of Industrial Engineering, KAIST, Korea, 1991.
[KIM 92] KIM J.K., CHUNG T.Y., KIM S.H., A knowledge-based decision system to build
an influence diagram: KIDS, Proceedings of the First World Congres on Expert
Systems, Orlando, Florida, 1992.
[KIM 95] KIM J.K., A Study on the Development of Intelligent Decision Systems Using
Influence Diagram, Journal of the Korean OR/MS Society, vol. 20, 1995, p. 77-104.
[KIM 97] KIM J.K., PARK K.S., Neural network-based decision clas analysis for building
topological-level influence diagram, International Journal of Human-Computer Studies,
vol. 46, 1997.
[KIM 98] KIM J.K., CHU, S.C., Sensitivity Analysis in the Decision Class Analysis Using
Neural Networks, Proceedings of the Fourth World Congres on Expert Systems,
Mexico, 1998.
[OLM 84] OLMSTED, S.M., On Representing and Solving Decision Problems, Ph.D.
thesis, Department of Engineering-Economic Systems, Stanford University, 1984.
[REE 89] REED, J., Building decision models that modify decision systems, Knowledge
System Laboratory, no. KSL-89-21, Stanford University, Stanford, CA, 1989.
[RUM 86] RUMELHART D., MCLELLAND J., Parallel Distributed Processing, vol. 1.
MIT Pres, Cambridge, Mas., 1986.
[SHA 86] SHACHTER R.D., Evaluating influence diagrams, Operations Research, vol. 34,
1986, p. 871-882.
An influence diagram based on neural networks 17
[SHA 88] SHACHTER R.D., Probabilistic inference and influence diagrams, Operations
Research, vol. 36, 1988, p. 589-604.
[SON 94] SHONNENBER F.A. et al., An Architecture for Knowledge-based Construction
of Decision Models, Medical Decision Making, vol. 14, 1994, p. 27-39.
[VOL 88] VOLKEMA R., Problem Complexity and the Formulation Proces in Planning
and Design, Behavioral Science, vol. 33, 1988, p. 292-300.
[WOO 81] WOOLLEY R., PIDD M., Problem Structuring A Literature Review, Journal
of Operational Research Society, vol. 32, 1981, p. 25-63.
[ZAH 91] ZAHEDI F., An introduction to neural networks and a comparison with artificial
intelligence and expert systems, Interfaces, vol. 21, 1991, p. 25-38.
*원하는 자료를 검색 해 보세요.
  • 경영의사결정-한국통신의 요금수납업무개편 30페이지
    - Influence Diagram> <그림4- Objective Network ... . Objective Network 1) Objective Network의 도출
  • SAS 레포트, 따라만해도 되는 전문서 21페이지
    Neural Networks A neural network was one ... . Figure. 2 Neural network property Figure. 4 ... Optimisation in neural network Figure 5
  • Development & Neuroplasticity 5페이지
    networks ? Mis building up the new neural ... create new networks of neurons ? These ... network - Synaptogenesis Maladapitve
  • SAS 데이타마이닝 보고서입니다. 34페이지
    , Neural Networks, Ensemble의 모델을 Traing ... 비즈니스 전략 방안을 마련해 본다.DIAGRAM부동산 가격값을 예측하는 ... :301.02N40:30:301.21DIAGRAM부동산 가격유형을
  • [경영정보시스템] e-biz 사업계획서 73페이지
    과객의 서점 구매 패턴(Neural Network의 구축)을 파악 후 E ... pattern을 파악하는 것이 가능하게 되어 NN(NEURAL NETWORK ... 패턴을 조사 (Neural Network 의 이용) 하는 것도 유의해야하며
  • 벤처 동향 & 벤처 투자 의사결정 21페이지
    시장을 공략하되 대기업과 긴밀한 관계 유지: 한아시스템(네트워크장비, 시스코와 ... 프론티어 네트워크, 디지털 경제에 쉽게 적응 저금리 시대의 투자 대상 벤처 ... CB-DCA 벤처 H/W S/W 인터넷 반도체 네트워크 OA/통신 게임
  • Business Process Modeling 18페이지
    네트워크 구축 Information integrity 전략적 경쟁 ... 잠재된 정보 찾기와 변수들의 네트워크를 알아보기 위해서 비즈니스 전체를 보는 ... or structure diagram preparation. Stage
더보기
      최근 구매한 회원 학교정보 보기
      1. 최근 2주간 다운받은 회원수와 학교정보이며
         구매한 본인의 구매정보도 함께 표시됩니다.
      2. 매시 정각마다 업데이트 됩니다. (02:00 ~ 21:00)
      3. 구매자의 학교정보가 없는 경우 기타로 표시됩니다.
      4. 지식포인트 보유 시 지식포인트가 차감되며
         미보유 시 아이디당 1일 3회만 제공됩니다.
      상세하단 배너
      최근 본 자료더보기
      상세우측 배너
      상세우측 배너
      추천도서
      An interactive approach to build an influence diagram based on Neural Neworks