An Application of the Rough Set Approach to Credit Rating

등록일 2000.06.07 MS 워드 (doc) | 9페이지 | 가격 10,000원


러프집합이론(Rough Set Theory)을 이용한 신용도 평가입니다.



1. Introduction

2. Rough Sets and Neural Networks
2.1 Rough Sets

3. A Credit Rating Problem
3.1 Problem Statement
3.2 Application of the Rough Set Approach
3.3 Presentation of Rules

4. Conclusions



The credit rating represents an assessment of the relative level of risk associated with the timely payments required by the debt obligation. In this paper, we present a new approach to credit rating of customers based on the rough set theory. The concept of a rough set appeared to be an effective tool for the analysis of customer information systems representing knowledge gained by experience. The customer information system describes a set of customers by a set of multi-valued attributes, called condition attributes. The customers are classified into groups of risk subject to an expert’s opinion, called decision attribute. A natural problem of knowledge analysis consists then in discovering relationships, in terms of decision rules, between description of customers by condition attributes and particular decisions. The rough set approach enables one to discover minimal subsets of condition attributes ensuring an acceptable quality of classification of the customers analyzed and to derive decision rules from the customer information system which can be used to support decisions about rating new customers.
Using the rough set approach one analyses only facts hidden in data, it does not need any additional information about data and does not correct inconsistencies manifested in data; instead, rules produced are categorized into certain and possible. A real problem of the evaluation of credit rating by a department store is studied using the rough set approach.

참고 자료

[1] Boryczka, M., and Slowinski, R., “Derivation of optimal decision algorithms from decision tables using rough sets,” Bulletin of the Polish Academy of Sciences, ser. Technical Sciences, Vol. 36, 1988, pp.252-260.
[2] Dubois, D., and Prade, H., ‘Putting rough sets and fuzzy sets together’, in Slowinski, R. (ed), Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic, Dordrecht, 1992, pp. 203-232.
[3] Capon, N., (1982). “Credit Scoring Systems: A Critical Analysis,” Journal of Marketing, Vol.46, pp.83-88.
[4] Grzymala-Busse, J.W., ‘LERS – a system for learning from examples based on rough sets’, in Slowinski, R. (ed), Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic, Dordrecht, 1992, pp.3-18.
[5] Kim, C.Y., Ahn, B.S, Cho, S.S., and Kim, S.H., “The Integrated Methodology of Rough Set Theory and Artificial Neural Network for Business Failure Prediction,” The Journal of MIS Research, Vol. 9, No.4, 1999, (in press).
[6] Krusinska, E., Slowinski, R. and Stefanowski, J. “Discriminant versus rough set approach to vague data analysis”, Applied Stochastic Models and Data Analysis, Vol. 8, 1992, pp.1-17.
[7] Pawlak, Z., “Rough sets,” International Journal of Information and Computer Sciences, Vol. 11, pp. 341-356.
[8] Skowron, A. and Grzymala-Busse, J.W., ‘From the rough set theory to the evidence theory’, in Fedrizzi, M., Kacpryk, J. and Yager, R.R. (eds), Advances in the Dempster-Shafer Theory of Evidence, John Wiley, New York, 1993.
[9] Siegel, P.H., de Korvin, A., & Omer, K., “Detection of irregularities by auditors: a rough set approach,” Indian Journal of Accounting, 1993, pp.44-56.
[10] Slowinski, R., & Stefanowski, J., “‘RoughDAS’ and ‘RoughClass’ software implementations of the rough set approach,” In: R. Slowinski (ed.) Intelligent Decision Support. Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic Publishers, Dordrecht, 1992, pp.445-456.
[11] Ziarko, W., Golan, R., & Edwards, D., “An application of DATALOGIC/R knowledge discovery tool to identify strong prediction rules in stock market data,” Proceedings of AAAI Workshop on Knowledge Discovery in Databases, Washington DC. 1993.
*원하는 자료를 검색 해 보세요.
  • 공학용 확률통계 및 랜덤 프로세스 이론 3장 연습문제 풀이 8페이지
    공학용 확률통계 및 랜덤 프로세스 이론 3장 연습문제를 노트에 풀이하여 스캔한 파일.
  • [UNIX] 유닉스 프로그래밍 연습문제 3장 풀이 13페이지
    3.3 ls에 의해 지정되는 허가의 집합(예를들면, rwxr-xr-x)을 동등한 의미를 갖는 팔진수값으로 바꾸어주는 루틴 lsoct를 작성하라. 그리고 다시 반대로 바꾸어주는 octls도 작성하라.sol)int lsoct(char* perm){ int i,..
  • [교육공학] 3장 교수 목적 분석 17페이지
    3.3.1 언어정보 기본적으로 질문에 대한 하나의 유일한 대답과 질문을 하는 한 가지의 기초적인 방법이 있음. 본질적으로, 언어 정보 목적은 학습자가 비교적 세부적인 질문에 세부적인 응답을 하도록 요구함. 언어 정보 목적은 사용된 동사로 알 수 있는데, 종종 학습자는 ..
  • Database system comcepts 5판 3장 연습문제 풀이 11페이지
    3.1 Consider the insurance database of Figure 3.11, where the primary keys are underlined. Construct the following SQL queries for this relational dat..
  • 매우 자세한 백신 설치 및 사용법 - 노턴 안티바이러스 백신 59페이지
    ◇ 설치과정차례로 돌아가기1. 설치 씨디를 넣으면 씨디가 자동 실행되면서 다음과 같은 화면이 나타난다. 시스템설정에 따라 씨디가 자동 실행되지 않을 수도 있는 그럴 경우에는 씨디 드라이브의 cdstart.exe 파일을 실행해주면 된다.메뉴 중 푸른색 사각형으로 표시된 ..
  • [공학]경제성공학 3장 연습문제풀이 2페이지
    3장 연습문제보간법을 이용하여
  • 시뮬레이션과제#2_Chapter3_Exercise 68페이지
    Exercise 3.11.문제 Run > Setup > Replication Parameters의 설정을 바꾸어서 모델3-1을 5회 실행하라 출력을 검토하고 수행 척도가 실행 횟수에 따라서 어떻게 변동하는지를 주목하고, 표2-4의 결과와 맞는지 ..
      최근 구매한 회원 학교정보 보기
      1. 최근 2주간 다운받은 회원수와 학교정보이며
         구매한 본인의 구매정보도 함께 표시됩니다.
      2. 매시 정각마다 업데이트 됩니다. (02:00 ~ 21:00)
      3. 구매자의 학교정보가 없는 경우 기타로 표시됩니다.
      4. 지식포인트 보유 시 지식포인트가 차감되며
         미보유 시 아이디당 1일 3회만 제공됩니다.
      상세하단 배너
      최근 본 자료더보기
      상세우측 배너
      An Application of the Rough Set Approach to Credit Rating