혼돈이론(Chaos) 이란 ?

등록일 2000.10.08 한글 (hwp) | 2페이지 | 가격 1,000원

본문내용

과학자들은 지금까지 매우 복잡해 보이는 자연현상이라도 숨겨져 있는 근본 원리는 매우 단순할 것이라 생각해 왔다. 이런 생각은 갈릴레오와 뉴튼 이래 성공을 거두어 금세기의 중요한 업적인 양자 역학과 아인슈타인의 상대성 이론에까지 이르게 되었다. 예를 들어 물체의 운동을 기술할 때 우리는 많은 실제적 사실들은 덜 중요하다고 무시하여 단순화된 운동 방정식을 세우고 그 방정식을 풀어서 그 물체의 미래 상태를 예측한다. 이때 사용되는 방정식이 선형 방정식이며 무시된 사실들은 주로 비선형적인 항들이다.
오랫동안 비선형 항들을 포함하는 방정식들은 거의 풀지 못했기 때문에 관심의 대상에서 제외되어 왔다. 여기서 선형방정식 이란 그 방정식을 푼 해들을 서로 더하거나 뺀 것들도 또한 그 방정식의 해가 되는 경우를 말한다. 그래서 어떤 선형 방정식이 몇 개의 해를 가지면 그 방정식은 동시에 수많은 해들도 가진다. 보통 방정식의 어떤 해에 초기 조건들이라 부르는 값을 대입하면 결과가 결정된다. 선형 방정식의 경우 두 개의 비슷한 값들을 대입하면 비슷한 결과들을 얻는다. 이런 선형방정식들을 이용하여 자연현상을 설명하려는 접근 방법은 아주 성공적이어서 현대과학 문명의 대부분이 이 방법에 의존하여 발전해 왔다. 프랑스의 수학자인 라플라스는 ' 나에게 우주의 모든 입자들의 위치와 속도를 주면 우주의 장래를 예측할 수 있다. ' 고 장담하기도 했다.
그러나 아직도 많은 자연현상들이 선형 방정식 으로는 잘 설명되지 않는다. 물이 끓는현상, 회오리 바람이나 태풍, 갑작스런 전염병의 퍼짐, 특정한 생물의 개체수의 늘어남과 줄어듬 등 기타 많은 현상들은 전혀 이해할 수 없었다. 이런 현상들의 특징은 작용하는 물체의 수가 많고 그들이 매우 복잡하고 불규칙적인 운동을 한다는 점이다. 즉 이 현상들은 선형적이 아니라 비선형적인 방정식들로만 표현될 수 있다는 것이다. 이런 경우 두 개의 아주 비슷한 초기 조건들을 대입해도 전혀 비슷한 결과들을 얻을 수 없다. 이것은 그때까지 알려진 방법으로는 풀 수 없는 방정식 이었다.

태그

      최근 구매한 회원 학교정보 보기
      1. 최근 2주간 다운받은 회원수와 학교정보이며
         구매한 본인의 구매정보도 함께 표시됩니다.
      2. 매시 정각마다 업데이트 됩니다. (02:00 ~ 21:00)
      3. 구매자의 학교정보가 없는 경우 기타로 표시됩니다.
      최근 본 자료더보기
      추천도서